GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

Course Title: Structural Mechanics (Code: 3330604)

Diploma Programme in which this course is offered	Semester in which offered
Civil Engineering /Environment	
Engineering/Transportation Engineering	THIRD SEMESTER

1. RATIONALE

The Applied Mechanics in Second Semester was taught to study the external effects on the body due to action of force system. The behaviour of structure under different loading conditions is needed to understand so that design can do by the engineer. In this course, analysis of determinate structures under action of transverse loading, along with, analysis of members under direct loading is to be studied. Analysis of Industrial Trusses is also incorporated to give an idea of typical structure to the students. The Structural Mechanics-I, will enable the student to analyse Steel & Concrete Structures used in Civil Engineering construction.

2. COMPETENCY

Calculate various structural material properties under direct loading condition Analyse Statically Determinate structures like Beam, Column & Truss.

3. TEACHING AND EXAMINATION SCHEME

	l Credits Examination Scheme		Examination		Total Credits	cheme	ching S	Tea
Total Marks	Marks	Practical	Marks	Theory	(L+T+P)	rs)	(In Hou	
	PA	ESE	PA	ESE	С	Р	Т	L
150	30	20	30	70	07	02	01	04

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

Major Learning Outcomes Topics and Sub-topics Unit Unit – I 1a. Calculate Material 1.1 Different types of Structures and Loads 1.2 Direct Stress, linear Strain, Hook's Law Properties Under Longitudinal & Lateral Numerical Problems on Direct Stress & DIRECT Loads Linear Strain . Stress Strain curve of Mild **STRESS &** Steel . Modulus of Elasticity. Yield, **STRAIN** 1b. Analyse Composite & Breaking & Ultimate Stress and factor of **Compound Sections** Safety along with numerical problems 1.3 Lateral Strain and Poission's ratio with 1c. Compute Strain Energy numerical problems under Different Types of 1.4 Basics Concepts of Shear Stress, Shear Strain & Shear Modulus Loading 1.5 Bulk Modulus , volumetric Strain along with numerical Problems 1.6 Differentiate between Sudden, Gradual & Impact Loads Define Strain Energy, Proof Resilience for Sudden, Gradual & Impact Load along with numerical problems 2.1 Moment of Inertia & its Importance 2 Compute Moment of Inertia Unit – II of Symmetric & 2.2 Parallel & Perpendicular Axis Theorem asymmetric structural 2.3 Formula of Moment of Inertia of solid & MOMENT OF sections Hollow sections like Rectangle, Triangle **INERTIA** , Circle 2.4 Moment of Inertia about C.G for I section, H section, Channel Section, Angle Section, T Section and Built up Section having flange plates to I & H Section and of Double Channels back to back & toe to toe Unit – III 3 Draw Shear Force & 3.1 Statically Determinate Beam Like Cantilever, Simply Supported & Bending Moment Diagram for Statically Over Hang Beam S.F & B.M IN Determinate Beams 3.2 Shear Force and Bending Moment and its BEAM relationship 3.3 Sagging & Hogging Bending Moment and its importance 3.4 Point of Contra-flexure & its importance 3.5 S.F & B.M Diagram for Cantilever, Simply Supported & Over Hang Beam subjected to Point Load and/ or U.D.L Unit – IV 4 Apply Bending Theory. Bending Theory Equation 4.1 Bending stress. Sectional Modulus. 4.1 Calculate Bending Nutral Axis **BENDING &** Stress Apply Bending theory to Statically SHEAR 4.2 Draw stress determinate beams having rectangular or STRESSES IN distribution diagram circular section BEAM 4.2 Shear Stress equation Shear Stress Distribution Diagram for

4. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics	
		Solid & Hollow Rectangular And Circular Section Apply shear Stress Equation & Draw Shear Stress Distribution Diagram for I, H, T, Channel & Angle Section	
Unit – V ANALYSIS OF TRUSS	5. Analyse Statically Determinate Trusses	 5.1 Perfect & Imperfect Truss 5.2 Various trusses for different spans and application 5.3 Analysis of Triangle , Howe , North Light & Fan trusses under Panel Point Loads using Graphical & Method of Joint 	
Unit – VI COLUMN & STRUT	6 Calculate Load carrying Capacity of Columns & Struts	 6.1 Column & Strut 6.2 Short & Long Column 6.3 End Condition of Column and effective Length of Column & Modes of Failure in column 6.4 Radius of Gyration , Slenderness Ratio 6.5 Euler's Crippling Load 6.6 Rankin's load / Buckling Load of Column 	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	DIRECT STRESS &	10	02	02	06	10
	STRAIN					
II	MOMENT OF	06	02	00	08	10
	INERTIA					
III	S.F & B.M IN BEAM	14	04	00	16	20
IV	BENDING & SHEAR	10	04	00	06	10
	STRESSES IN BEAM					
V	ANALYSIS OF	10	04	02	06	12
	TRUSS					
VI	COLUMN & STRUT	06	02	02	04	08
Total		56	18	06	46	70

Course code: 3330604

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills so that students are able to acquire the competency. Following is the list of experiments for guidance.

S. No.	Unit No.	o. Practical/Exercise		
			Hrs.	
			Required	
1	Ι	Conduct Tension test on a given sample of mild steel and	04	
		draw Stress Strain Curve		
2	Ι	Determine Young's Modulus of wire of given material	02	
3	Ι	Calculate impact value of mild steel using IZOD impact	02	
		test apparatus		
4	Ι	Calculate impact value of mild steel using Charpy impact	02	
		test apparatus		
5	Ι	Solve at least six problems pertaining to Unit – I	02	
6	II	Work out Moment of Inertia of Fly Wheel	02	
7	II	Solve Four Problems of Moment of Inertia	02	
8	IV	Solve at Least Eight numerical Problems of Unit- IV	02	
9	V	Analyse Truss using Graphical Method (At least THREE 00		
		Trusses) and verify using analytical method.		
10	VI	Demonstrate End Conditions of Column using suitable model/example	02	
11	VI	Solve Least Six numerical Problems pertaining Unit - VI		
		TOTAL	28	
TUTORIAL				
1	III	Solve few problems of UNIT III and give similar exercises	08	
		at least 12 to the students to practice		
11	V	Solve PROBLEMS OF UNIT V and ask students to06		
		practice for at least 04 problems based on Method of Joint		
		Total	14	

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- 1. Visit Industrial Shed and submit a brief report of Different Types of Trusses and its Components are in use .
- 2. Survey the market and prepare a list of various type of Structural Steel Sections commonly used.

8. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S. No.	Title of Books	Author	Publication
1.	Strength of Material & Mechanics of Structures	Dr. B C Punamia	

2.	Strength of Material	S	
		RAMAMURTHAN	
3.	Strength of Material	Timo Shanku	
4.	Theory of Structures	R S KHURMI	

B. List of Major Equipment/Materials

- 1. Universal Testing Machine
- 2. SEARL'S Apparatus to find Young's Modulus
- 3. Working Model of End Conditions of Column
- 4. IZOD Impact Test Apparatus
- 5. CHARPY Test Apparatus
- 6. FLY WHEEL

C List of Software/Learning Websites

- 1. nptel.iitm.ac.in/courses/.../IIT.../lecture%2023%20and%2024.htm
- 2. en.wikipedia.org/wiki/Shear_and_moment_diagram
- 3. www.freestudy.co.uk/mech%20prin%20h2/stress.pdf
- 4. www.engineerstudent.co.uk/stress_and_strain.html
- 5. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf

9. INSTRUCTIONAL STRATEGICS:

Subject Teacher may use Lecture, demonstration, video films field/industry visit as instructional strategies.

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- 1. PROF. B G RAJGOR, H.O.D, APP. MECH., BBIT, V V NAGAR
- 2. PROF. K VENKATESHWARLU, H.O.D, APP. MECH., TFG POLYTECHNIC, ADIPUR
- 3. PROF. J H GABRA , I/C H.O.D , APP. MECH. , G.P , GODHARA

Coordinator and Faculty Members from NITTTR Bhopal

- 1. Dr. A K JAIN , PROFESSOR , DEPARTMENT OF CIVIL & ENVIORNMENT ENGINEERING
- 2. Prof J.P.Tegar, PROFESSOR AND HEAD , DEPARTMENT OF CIVIL & ENVIORNMENT ENGINEERING